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Fig. 1. Visualization for our FlexiAct results. Given a target image, FlexiAct transfers actions from a reference video to the target subject, achieving
accurate motion adaptation and appearance consistency even in heterogeneous scenarios with varying spatial structures or cross-domain subjects.

Action customization involves generating videos where the subject performs
actions dictated by input control signals. Current methods use pose-guided
or global motion customization but are limited by strict constraints on spa-
tial structure such as layout, skeleton, and viewpoint consistency, reducing
adaptability across diverse subjects and scenarios. To overcome these limita-
tions, we propose FlexiAct, which transfers actions from a reference video
to an arbitrary target image. Unlike existing methods, FlexiAct allows for
variations in layout, viewpoint, and skeletal structure between the subject
of the reference video and the target image, while maintaining identity
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consistency. Achieving this requires precise action control, spatial struc-
ture adaptation, and consistency preservation. To this end, we introduce
RefAdapter, a lightweight image-conditioned adapter that excels in spatial
adaptation and consistency preservation, surpassing existing methods in
balancing appearance consistency and structural flexibility. Additionally,
based on our observations, the denoising process exhibits varying levels of
attention to motion (low frequency) and appearance details (high frequency)
at different timesteps. So we propose FAE (Frequency-aware Action Extrac-
tion), which, unlike existing methods that rely on separate spatial-temporal
architectures, directly achieves action extraction during the denoising pro-
cess. Experiments demonstrate that our method effectively transfers actions
to subjects with diverse layouts, skeletons, and viewpoints. We release our
code and model weights to support further research at FlexiAct.
CCS Concepts: • Computing methodologies→ Computer vision.
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1 INTRODUCTION
Action transfer involves applying specific actions to a target sub-
ject and is widely used in films, games, and animation. However,
it often requires substantial financial and human resources. For
example, professional motion capture systems can cost tens of thou-
sands of dollars and require skilled technicians. Similarly, creating
a 30-second animation at 12 frames per second can take about 20
work days from six professional animators. These high costs pose
significant challenges, limiting access for many potential creators.
In response to these limitations, significant efforts have been

devoted to achieving motion control in video generation, which
can be broadly categorized into two main approaches: (1) Prede-
fined signals methods using signals like pose and depth maps,
such as AnymateAnyone [Hu 2024] and StableAnimator [Tu et al.
2024b], and (2) Global motion methods like Motion Director[Zhao
et al. 2023] and Motion Inversion [Wang et al. 2024b]. Despite ad-
vancements, these methods exhibit notable limitations. Predefined
signal methods require strict alignment of spatial structures (e.g.,
shape, skeleton, viewpoint) between the target image and reference
video, which is often not feasible in real-world scenarios. They also
struggle with obtaining pose information for non-human subjects.
Conversely, global motion methods typically generate motions with
fixed layouts and cannot transfer motion across diverse subjects.
Some approaches [Zhao et al. 2023] employ identity-specific Low-
Rank Adaptations (LoRAs) [Hu et al. 2021] for animation, yet they
encounter difficulties with appearance consistency and flexibility.

To this end, we introduce FlexiAct, an Image-to-Video (I2V) frame-
work for flexible action customization in heterogeneous scenarios.
Given a reference video and an arbitrary target image, our method
transfers actions from the reference video to the target image with-
out alignment in layout, shape, or viewpoint, preserving both action
dynamics and appearance details. FlexiAct builds upon CogVideoX-
I2V [Yang et al. 2024] with a two-stage training on two novel com-
ponents: RefAdapter and Frequency-aware Action Extraction (FAE),
addressing the following challenges: (1) Spatial structure adapta-
tion:Adapting actions to target images with different poses, layouts,
or viewpoints. (2) Precise action extraction and control: Accu-
rately decoupling and replicating action from the reference video.
RefAdapter addresses the first challenge, which is an image-

conditioned architecture generating videos given the input images.
It combines the accuracy of I2V frameworks with the flexibility of
conditional injection architectures like IP-Adapter [Ye et al. 2023a],
ensuring appearance consistency between the video and the con-
ditioning image while avoiding strict constraints on the first video
frame. This enables FlexiAct to adapt reference motion to various
spatial structures using arbitrary frames as image conditions. Re-
fAdapter requires only low training costs, finetuning a small set

of LoRA, avoiding the large parameter replication in ReferenceNet
[Hu 2024] and ControlNet [Zhang et al. 2023].
For precise action control, we propose Frequency-aware Action

Extraction (FAE). This method incorporates a set of learnable em-
beddings to capture entangled video information from the refer-
ence video during training. As illustrated in Figure 2, we observe
that these embeddings dynamically adjust their attention to differ-
ent frequency components across denoising timesteps. Specifically,
they prioritize motion information (low-frequency features) in early
timesteps and shift focus to appearance details (high-frequency fea-
tures) in later timesteps. Leveraging this property, FAE performs
action extraction directly during the denoising process by modulat-
ing attention weights at different timesteps, eliminating the need
for separate spatial-temporal architectures.

To validate the effectiveness of FlexiAct, we establish a benchmark
for heterogeneous scenarios. Experiments demonstrate FlexiAct’s
flexible and general action transfer capabilities. As shown in Figure
1, FlexiAct accurately transfers action from a reference video to
subjects with varying layouts, viewpoints, shapes, and even domains,
while maintaining appearance consistency.

In summary, our paper makes the following key contributions:

• We propose FlexiAct, a flexible action transfer method that first
adapts reference actions to arbitrary subjects with diverse spatial
structures while ensuring action and appearance consistency.

• We introduce RefAdapter, which achieves spatial structure adapta-
tion and appearance consistency with a few trainable parameters.

• We propose Frequency-aware Action Extraction, which precisely
extracts action and controls the video synthesis during sampling.

• Our extensive experiments demonstrate FlexiAct’s capabilities
across diverse scenarios, including various subjects and domains.

2 RELATED WORK

2.1 Global Motion Customization
Global Motion Customization focuses on transferring the overall mo-
tion dynamics from a reference video, such as camera movements,
object trajectories, and actions, to generate videos with consistent
global motion patterns [Jeong et al. 2024, 2023; Ling et al. 2024;
Yatim et al. 2023; Zhao et al. 2023]. The challenge of this task lies in
effectively extracting motion from the reference video. Recent work
like Motion Director[Zhao et al. 2023] addresses this by adopting
spatial-temporal LoRA[Hu et al. 2021] to decouple the appearance
and the motion. Meanwhile, Diffusion Motion Transfer [Yatim et al.
2023] extracts motion via a handcrafted loss during inference. On
the other hand, Video Motion Customization [Jeong et al. 2023]
encodes motion directly into the text-to-video model. Motion In-
version [Wang et al. 2024b] introduces two types of embeddings
to decouple the appearance and motion. However, most of these
methods fail to adapt motion to specific subjects, as they primarily
focus on generating videos that approximate the layout of the refer-
ence video. In contrast, we propose a framework that can handle the
action transfer in heterogeneous scenarios. Furthermore, inspired
by the insights into noise schedules from [Lin et al. 2024; Lu et al.
2024; Qiu et al. 2023; Si et al. 2024; Wu et al. 2023b] and our observa-
tions regarding different denoising timesteps, we propose the first
denoising process-based action extraction framework.
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Fig. 2. Attention maps between our frequency-aware embeddings and video tokens in the MMDiT at different denoising timesteps. Our
embeddings focus on low-frequency motion information (e.g., motion regions) in early denoising stages and shift to high-frequency details in later stages.

2.2 Predefined signal-based Action Customization
Action customization methods based on predefined signals, such as
pose, depth, and edges, transfermotion from these signals to animate
target images [Esser et al. 2023; He et al. 2022; Wang et al. 2023d].
They focus on how to precisely control subjects with identical spa-
tial structures using predefined signals. Early approaches [Huang
et al. 2021; Siarohin et al. 2019, 2021] primarily utilized GANs [Good-
fellow et al. 2020] for reference animation. Recent advancements
have shifted to diffusion models, with Disco [Wang et al. 2024a]
pioneering this transition for image animation. Subsequent works,
such as MagicAnimate [Xu et al. 2024] and AnimateAnyone [Hu
2024], employ ReferenceNet and pose nets to decouple pose and
appearance modeling. Further innovations include Champ [Zhu
et al. 2024], which integrates 3D SMPL signals for enhanced con-
trollability, and Unianimate [Wang et al. 2024c], which incorporates
Mamba [Dao and Gu 2024] into diffusion models for improved effi-
ciency. Additionally, MimicMotion [Zhang et al. 2024a] introduces
a regional loss to mitigate distortion, while ControlNeXt [Peng et al.
2024] replaces the computationally intensive ControlNet [Zhang
et al. 2023] with a lightweight convolution-based pose net. However,
these methods remain heavily reliant on predefined signals, limit-
ing their effectiveness when the target image and reference video
exhibit significant spatial discrepancies, such as variations in shape
or pose. Moreover, they face challenges in non-human scenarios,
where predefined motion signals are often unavailable or difficult to
obtain. In contrast, our method does not rely on predefined signals
with numerous constraints, enabling it to handle more general sce-
narios, such as transferring actions between subjects with different
shapes, skeletons, viewpoints, and even across domains.

2.3 Customized Video Generation via Condition Injection
With the advancement of text-to-video models [Bar-Tal et al. 2024;
Blattmann et al. 2023; Brooks et al. 2024; Chen et al. 2023b, 2024;

Esser et al. 2023; Guo et al. 2023; Ma et al. 2024; Wang et al. 2023c,b,a;
Yang et al. 2024; Yuan et al. 2024; Zhang et al. 2024b; Zhou et al.
2024], customized video generation has emerged as a critical and
highly active research topic. Among these methods, some focus on
injecting control signals into the video generation process through
condition injection, which can generally be categorized into two
types: one based on cross-attention injection, such as IP-Adapter[Ye
et al. 2023b], and the other on module duplication for layer-wise in-
jection, such as ReferenceNet[Hu 2024]. Cross-attention approaches,
though lightweight, often fail to ensure appearance consistency due
to coarse-grained representations (e.g., CLIP image features [Rad-
ford et al. 2021]). Module duplication enables finer control but in-
curs high training costs from parameter replication. In contrast,
based on the I2V model, our RefAdapter strikes a balance, achieving
ReferenceNet-level fine-grained appearance control while requir-
ing only a small number of training parameters. Additionally, Re-
fAdapter can reduce the strict first-frame dependency of I2V models.

3 METHOD

3.1 Overview
As illustrated in Figure 3, FlexiAct builds upon CogVideoX-I2V
with a two-stage training on two components: RefAdapter and
Frequency-aware Action Extraction (FAE). RefAdapter facilitates
action adaptation to subjects with varying spatial structures while
maintaining appearance consistency. FAE dynamically adjusts atten-
tion weights to frequency-aware embeddings at different denoising
timesteps, enabling effective action extraction. These two compo-
nents are trained separately to ensure that action extraction does not
interfere with RefAdapter’s consistency preservation. Section 3.1
introduces FlexiAct’s base model. Section 3.3 introduces RefAdapter
and its training methodology. Section 3.4 details the training and
inference processes of FAE. Finally, Section 3.5 outlines the training
and inference pipeline of FlexiAct.
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Fig. 3. Overview of FlexiAct. (1) The upper part illustrates RefAdapter’s training, which conditions arbitrary frames to enable transitions across diverse
spatial structures. (2) The lower part outlines FAE’s training and inference, where attention weights of video tokens to the frequency-aware embedding are
dynamically adjusted based on timesteps, facilitating action extraction.

3.2 Basis Image-to-Video Diffusion Model
We use CogVideoX-I2V [Yang et al. 2024] as our basis image-to-
video (I2V) model. CogVideoX-I2V is an MMDiT-based [Esser et al.
2024] video diffusion model that operates in a latent space. Given an
image I ∈ R𝐻×𝑊 ×3 and a textual prompt, CogVideoX-I2V generates
a video V ∈ R𝑇×𝐻×𝑊 ×3. CogVideoX-I2V utilizes a 3D VAE to map
condition images and videos into the latent space. For video inputs,
the 3D VAE encoder (𝜖 in Figure 3) compresses both temporal and
spatial dimension, producing a latent 𝐿𝑣𝑖𝑑𝑒𝑜 ∈ R

𝑇
4 ×

𝐻
8 ×𝑊

8 ×𝐶 , where
𝐶 denotes the channel number. For image inputs (𝑇 = 1), the encoder
preserves the temporal dimension, yielding 𝐿𝑖𝑚𝑎𝑔𝑒 ∈ R1×

𝐻
8 ×𝑊

8 ×𝐶 ,
which is then zero-padded along the temporal dimension to match
𝐿𝑣𝑖𝑑𝑒𝑜 ’s shape (1 → 𝑇

4 ). During inference, this padded 𝐿𝑖𝑚𝑎𝑔𝑒 is
concatenated with a random noise N ∈ R

𝑇
4 ×

𝐻
8 ×𝑊

8 ×𝐶 along the
channel dimension for subsequent denoising process. During train-
ing, the first frame of the ground truth video serves as the input
image; its padded 𝐿𝑖𝑚𝑎𝑔𝑒 is concatenated with the noisy 𝐿𝑣𝑖𝑑𝑒𝑜 along
the channel dimension to predict the added noise. This process is
optimized with MSE loss between the added and predicted noise,
consistent with classic diffusion models [Ho et al. 2020].

3.3 RefAdapter
The upper part of Figure 3 illustrates the RefAdapter training process.
We note that directly using I2V for spatial structure adaptation is
challenging because: (1) the action extraction process compromises
the I2V model’s consistency preservation, and (2) I2V is a strongly
constrained image-conditioned framework. During training, I2V
uses the first video frame as the condition image, ensuring video
consistency but potentially hindering smooth action transfer if the
initial spatial structure differs from the reference video.

To address this, we introduce a gap between the condition im-
age and the initial spatial structure by using a randomly sampled
frame from the unedited video as the condition image during train-
ing. Specifically, we propose RefAdapter, which includes LoRA
injected into CogVideoX-I2V’s MMDiT layers. RefAdapter is trained
on 42,000 videos from [Ju et al. 2024] in a 40,000-step one-time train-
ing. The training process of RefAdapter mostly follows CogVideoX-
I2V, with key distinctions: (1) The condition image is randomly
selected from the entire untrimmed video instead of the first frame,
maximizing spatial structure discrepancy. (2) We replace the first
embedding along the temporal dimension of 𝐿𝑣𝑖𝑑𝑒𝑜 with 𝐿𝑖𝑚𝑎𝑔𝑒 , en-
abling themodel to use the first embedding as a reference for guiding
video generation, rather than constraining it as the video’s starting
point. Without this replacement, the generated video’s initial state
would remain constrained to match the condition image.

3.4 Frequency-aware Action Extraction
To extract action information from a reference video, a straightfor-
ward approach involves trainingmotion embeddings to fit motion in-
formation, akin to Genie [Bruce et al. 2024] or textual inversion [Gal
et al. 2022]. However, our initial attempts with this method yield
suboptimal results. Inspired by [Lin et al. 2024; Lu et al. 2024; Qiu
et al. 2023; Si et al. 2024; Wu et al. 2023b], we delve into the rela-
tionship between the embeddings and action information during
the denoising process. By examining the attention maps between
motion embeddings and video tokens across different denoising
timesteps, as visualized in Figure 2, we observe that our embeddings
predominantly focus on low-frequency action information in the
early stages, gradually shifting their attention to high-frequency
details in the later stages. Leveraging this insight, we propose the
Frequency-aware Action Extraction.

4



FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Specifically, the lower part of Figure 3 illustrates the training and
inference process of FAE. We train Frequency-aware Embedding
for individual reference videos, which includes learnable parame-
ters concatenated to MMDiT layers’ inputs. This training differs
from CogVideoX-I2V by applying random cropping on the input
video to prevent the Frequency-aware Embedding from focusing
on the reference video’s layout. RefAdapter is not loaded during
this training to protect its conditioning ability. After training, the
Frequency-aware Embedding captures both motion and appearance
from the reference video.
During inference, FAE extracts action information and adapts it

to the target image. As shown in Figure 2, attention maps between
frequency-aware embeddings and video tokens reveal that at larger
timesteps (e.g., step=800), the embeddings focus on motion infor-
mation (low frequency), with high attention on the moving parts
of the subject. At intermediate timesteps (e.g., step=500), the focus
shifts to fine-grained details of the subject. At later timesteps (e.g.,
step=200), attention is distributed across the entire image, indicating
a focus on global details like the background.
Based on this observation, during inference, we increase the at-

tention weight of video tokens on the frequency-aware embeddings
at larger timesteps while maintaining the original weights at other
timesteps. This enhances the generated video’s ability to perceive
and replicate the motion of the reference video. The reweighting
strategy of FAE can be formulated as:

𝑊𝑏𝑖𝑎𝑠 =


𝛼, 𝑡𝑙 ≤ 𝑡 ≤ 𝑇

𝛼

2

[
cos

(
𝜋

𝑡ℎ − 𝑡𝑙
(𝑥 − 𝑡𝑙 )

)
+ 1

]
, 𝑡ℎ ≤ 𝑡 < 𝑡𝑙

0, 0 ≤ 𝑡 < 𝑡ℎ

(1)

where𝑊bias denotes the bias value applied to the original atten-
tion weight. 𝑡 denotes denoising timestep. The parameter 𝛼 controls
the strength of the bias, while 𝑡𝑙 and 𝑡ℎ represent the low-frequency
and high-frequency timesteps, respectively. A transition function
is employed between these timesteps to smoothly vary𝑊bias from
low-frequency to high-frequency timesteps. During inference, the
attention weight of video tokens to the frequency-aware embedding
is dynamically adjusted as𝑊attn =𝑊𝑜𝑟𝑖 +𝑊bias in all DiT layers.

Experimental results demonstrate that the attention reweighting
strategy improves the generated video’s ability to reproduce the ref-
erence action. In practice, we set 𝛼 = 1, 𝑡ℎ = 700, and 𝑡𝑙 = 800, and
demonstrate the impact of the transition function on the generation
results in Figure 11. Without the transition function, changing the
bias at 𝑡 = 700 would cause the model to learn appearance informa-
tion from the reference video (e.g., the clothing in Figure 11) while
altering the bias at 𝑡 = 800 would result in inaccurate motion. This
indicates that a transition process between 𝑡 = 700 and 𝑡 = 800 is
necessary to achieve a balance between appearance and motion.

3.5 Training and Inference Pipeline of FlexiAct
As shown in Figure 3, we first train RefAdapter on a broader dataset
(upper part). Subsequently, we train the frequency-aware embed-
ding based on the individual reference video. RefAdapter does not
participate in this training process. During the Inference phase, the
RefAdapter is loaded, and an arbitrary target image is provided. FAE

Target Image Pose-based Method Global Method (I2V)

Fig. 4. Results of transferring “turning” action to the target image using the
pose-based method and the animation version of the global motion method.

dynamically adjusts the generated video’s attention to Frequency-
aware Embedding according to denoising timesteps, transferring
actions from the reference video to the target image.

4 EXPERIMENT

4.1 Implementation Details
Evaluation Dataset. We conduct experiments on a evaluation
dataset of 250 video-image pairs, featuring 25 distinct action cate-
gories. Each action is transferred to 10 different target images, cov-
ering a wide range of human motions (e.g., yoga, fitness exercises)
and animal motions (e.g., jumping, running). The target images in-
clude real humans, animals, animated, and game characters. This
diversity ensures our dataset encompasses a broad spectrum of sce-
narios, allowing for a comprehensive evaluation of our method’s
generalization capabilities.
Comparison Methods. Existing methods for action transfer in-
clude those based on predefined signals and global motion. Pre-
defined signal methods are ineffective for non-human entities or
subjects with significant skeletal differences, as shown in Figure 4.
Therefore, we use the recent global motion transfer method, Mo-
tionDirector [Tu et al. 2024a], as our baseline. For a fair comparison,
we reimplement MotionDirector on the stronger CogVideoX-I2V
backbone (referred to as MD-I2V) with identical training settings to
our methods. Additionally, we implement a base model that learns
actions directly through standard learnable action embeddings, with-
out using RefAdapter and FAE (referred to as BaseModel).
Training Details. For RefAdapter’s training, we conduct a one-time
40,000-step training on Miradata [Ju et al. 2024] with a learning rate
of 1e-5 and a batch size of 8 with the AdamW optimizer. RefAdapter
introduces 66M parameters, constituting 5% of CogVideoX-I2V’s
total parameters. Frequency-aware embeddings require 1,500 to
3,000 training steps on each reference video, depending on action
complexity. In comparison, the Motion Director needs 3,000 steps
for temporal LoRA and 300 for spatial LoRA.

4.2 Quantitative Evaluation
Automatic Evaluations. Following [Jeong et al. 2023; Wang et al.
2024b; Yatim et al. 2023], we employ Text Similarity, Motion Fidelity,
and Temporal Consistency to evaluate the semantic accuracy of the

5
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Fig. 5. Qualitative comparison of action transfer from reference video (Ref Video) to target images with varying spatial structures. Red boxes highlight regions
where the appearance deviates from the target image. Our method demonstrates superior performance in maintaining appearance consistency with the target
image and motion fidelity to the reference video compared to other approaches.

Method
Automatic Evaluations Human Evaluations

Text
Similarity ↑ Motion

Fidelity ↑ Temporal
Consistency↑

Appearance
Consistency ↑ Motion

Consistency
Appearance
Consistency

MD-I2V [Zhao et al. 2023] 0.2446 0.3496 0.9276 0.8963 v.s. Base Model 47.2 v.s. 52.8 53.1 v.s. 46.9
Base Model 0.2541 0.3562 0.9283 0.8951 - - -

w/o FAE 0.2675 0.3614 0.9255 0.9134 v.s. Base Model 59.7 v.s. 40.3 76.4 v.s. 23.6
w/o RefAdapter 0.2640 0.3856 0.9217 0.9021 v.s. Base Model 68.6 v.s. 31.4 52.2 v.s. 47.8

Ours 0.2732 0.4103 0.9342 0.9162 v.s. Base Model 79.5 v.s. 20.5 78.3 v.s. 21.7

Table 1. Quantitative comparisons and human evaluations. We train an I2V version of Motion Director (MD-I2V) based on CogVideoX. The Base Model trains
a set of learnable embeddings without incorporating both RefAdapter and FAE. “𝑝1 v.s. 𝑝2" means 𝑝1% results of the first method are preferred.

generated videos, the degree of motion alignment with the reference
videos, and the temporal coherence, respectively. Furthermore, we
introduce Appearance Consistency to assess the consistency in ap-
pearance between the generated videos and the target image. Below,
we provide a brief overview of these metrics.

Text Similarity. It is calculated with CLIP [Radford et al. 2021]
frame-to-text similarity, reflecting the semantic alignment degree
between the output video and the prompt.

Motion Fidelity. Introduced by [Yatim et al. 2023], it utilizes track-
lets computed by a tracking model [Karaev et al. 2023], measuring
the similarity between the motion trajectories in unaligned videos.

Temporal Consistency. It measures the smoothness and coherence
of a video sequence [Chen et al. 2023a; Jeong et al. 2023; Wu et al.
2023a; Zhao et al. 2023], quantified by the average similarity between
the CLIP image features of all frame pairs within the output video.
Appearance Consistency. It reflects the appearance consistency

between the output video and the target image, calculated as the
average CLIP similarity between the first frame and the remaining
frames of the output video.

Human Evaluation. Following [Zhao et al. 2023], we conduct a
human evaluation with 5 raters who assessed each generated video
for appearance consistency with the target image and motion con-
sistency with the reference video. Each participant compares 50
randomly selected video pairs, each containing one video generated
by a random method and one by the Base Model. Following [Zhao
et al. 2023], all methods are compared against the Base Model, serv-
ing as a solid baseline due to its comparable performance to MD-I2V.
In Table 1, “𝑝1 v.s. 𝑝2" indicates that 𝑝1% of the first method’s results
are prefer over 𝑝2% of the second method’s results.
Results. As shown in Table 1, our method significantly outper-
forms baseline approaches in both motion fidelity and appearance
consistency. This underscores the challenges of action transfer in
heterogeneous scenarios and demonstrates our approach’s effec-
tiveness in balancing action accuracy with appearance consistency.
Notably, our Motion Fidelity scores are generally lower than those
in global motion tasks, as they are affected by layout consistency,
whereas global motion tasks involve transferring motion to scenar-
ios with identical layouts, making them not directly comparable to
action transfer in heterogeneous scenarios.
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Fig. 6. Qualitative results of ablation study.We ablate Frequency-aware Action Extraction (FAE) and RefAdapter, comparing the action transfer results
from reference videos (Ref Video) to different subjects. Ablating FAE reduces action accuracy, demonstrating its effectiveness in action extraction. Ablating
RefAdapter degrades both appearance consistency and action precision, proving its capability in spatial structure adaptation for cross-subject action transfer.

4.3 Qualitative Evaluation
Figure 5 shows a qualitative comparison with the baseline method.
MD-I2V struggles to replicate the reference video’s motion accu-
rately. In the first example, the man fails to stand up after squatting,
and his arm movements do not match the original. In the second,
he does not lift his leg as in the reference, and one eye closes in
later frames. The Base Model also suffers from motion accuracy and
appearance consistency issues. In the first example, the man puts
on clothes, deviating from the original image, and his final motion
differs from the reference. In the second, his leg lift is exaggerated,
and clothing-like folds appear in the final frames. In contrast, our
method excels in both motion accuracy and appearance consistency.

4.4 Ablation Study
Table 1 and Figure 6 present our Ablation Study results. Quantitative
data show that removing FAE significantly decreasesMotion Fidelity,
highlighting its role in enhancing motion generation quality. This
is corroborated by qualitative results, where two distinct actions
transferred to different characters exhibit inconsistencies without
FAE. For example, in a stretchingmotion, the character merely raises
their hand without proper bending or stretching, deviating from the
reference video. Similar mismatches in the second example further
emphasize FAE’s importance for motion consistency.
We also examined the impact of removing RefAdapter. Quanti-

tative results indicate noticeable declines in both appearance con-
sistency and motion fidelity, as RefAdapter ensures adaptability to
varying spatial structures. Without it, the model struggles to adapt

motion to target images with different spatial layouts, weakening
appearance consistency. Qualitative results in Figure 6 support this:
in the first example, discrepancies in the character’s face and cloth-
ing are resolved with RefAdapter. In the second example, without
RefAdapter, the output video fails to extend arms fully, maintain-
ing them bent, and shows noticeable differences in facial details,
underscoring RefAdapter’s role in maintaining both motion and
appearance consistency.

5 DISCUSSION
In this paper, we tackle the action transfer in heterogeneous scenar-
ios, where the main difficulty is achieving precise action transfer
for subjects with different spatial structures while maintaining ap-
pearance consistency. We introduce FlexiAct, a flexible and versatile
approach that surpasses existing methods. Our RefAdapter adapts to
various spatial structures and ensures appearance consistency, while
Frequency-aware Action Extraction allows for precisely extracting
action during the denoising process. Extensive experiments show
that FlexiAct effectively balances action accuracy and appearance
consistency across diverse spatial structures and domains.
Despite achieving precise action and appearance consistency,

like [Jeong et al. 2023; Wang et al. 2024b; Yatim et al. 2023; Zhao
et al. 2023], our method requires optimization for each reference
video. Developing feed-forward motion transfer methods for het-
erogeneous scenarios is a key direction for future work.

Acknowledgments. This work was supported by Guangdong Natu-
ral Science Funds for Distinguished Young Scholar (No. 2025B1515020012).

7



SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shiyi Zhang*, Junhao Zhuang, Zhaoyang Zhang, Ying Shan, and Yansong Tang

Ref.

Video

Target

Image

Fig. 7. FlexiAct can transfer actions to diverse subjects while maintaining both appearance consistency with the target subject and action consistency with
the reference video.

Ref.

Video

Target

Image

Ref.

Video

Target

Image

Ref.

Video

Target

Image

Fig. 8. Examples of human action transfer using FlexiAct.

8



FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

Ref.

Video

Target

Image

Ref.

Video

Target

Image

Ref.

Video

Target

Image

Fig. 9. Examples of action transfer between animals using FlexiAct.

Ref.

Video

Target

Image

Ref.

Video

Target

Image

Fig. 10. Examples of action transfer from humans to animals using FlexiAct.

T
arg

et Im
a
g
e

R
ef V

id
e
o

w
/o

 tran
sitio

n
;

W
b
ia
s
=
ቊ 1
,𝑡
≥
8
0
0

0
,𝑡
<
8
0
0

w
/o

 tran
sitio

n
;

W
b
ia
s
=
ቊ 1
,𝑡
≥
7
0
0

0
,𝑡
<
7
0
0

O
u
rs

Fig. 11. Ablation of bias transition.

9



SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada Shiyi Zhang*, Junhao Zhuang, Zhaoyang Zhang, Ying Shan, and Yansong Tang

REFERENCES
Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel

Ephrat, Junhwa Hur, Guanghui Liu, Amit Raj, et al. 2024. Lumiere: A space-time
diffusion model for video generation. arXiv preprint arXiv:2401.12945 (2024).

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim,
Sanja Fidler, and Karsten Kreis. 2023. Align your Latents: High-Resolution Video
Synthesis with Latent Diffusion Models. In Proc. CVPR.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr,
Joe Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya
Ramesh. 2024. Video generation models as world simulators. (2024). https:
//openai.com/research/video-generation-models-as-world-simulators

Jake Bruce, Michael D Dennis, Ashley Edwards, Jack Parker-Holder, Yuge Shi, Edward
Hughes, Matthew Lai, Aditi Mavalankar, Richie Steigerwald, Chris Apps, et al. 2024.
Genie: Generative interactive environments. In Forty-first International Conference
on Machine Learning.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang,
Jinbo Xing, Yaofang Liu, Qifeng Chen, Xintao Wang, et al. 2023b. VideoCrafter1:
Open Diffusion Models for High-Quality Video Generation. arXiv preprint
arXiv:2310.19512 (2023).

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng,
and Ying Shan. 2024. Videocrafter2: Overcoming data limitations for high-quality
video diffusion models. In Proc. CVPR. 7310–7320.

Weifeng Chen, Jie Wu, Pan Xie, Hefeng Wu, Jiashi Li, Xin Xia, Xuefeng Xiao, and Liang
Lin. 2023a. Control-A-Video: Controllable Text-to-Video Generation with Diffusion
Models. arXiv preprint arXiv:2305.13840 (2023).

Tri Dao and Albert Gu. 2024. Transformers are SSMs: Generalized Models and Efficient
Algorithms Through Structured State Space Duality. In ICML.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anasta-
sis Germanidis. 2023. Structure and content-guided video synthesis with diffusion
models. In Proc. ICCV. 7346–7356.

Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry
Saini, Yam Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. 2024. Scal-
ing rectified flow transformers for high-resolution image synthesis. In Forty-first
international conference on machine learning.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H Bermano, Gal Chechik,
and Daniel Cohen-Or. 2022. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. 2020. Generative adversarial networks.
Commun. ACM (2020).

Yuwei Guo, Ceyuan Yang, Anyi Rao, YaohuiWang, Yu Qiao, Dahua Lin, and Bo Dai. 2023.
Animatediff: Animate your personalized text-to-image diffusion models without
specific tuning. arXiv preprint arXiv:2307.04725 (2023).

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. 2022. La-
tent Video Diffusion Models for High-Fidelity Long Video Generation. (2022).
arXiv:2211.13221 [cs.CV]

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Proc. NeurIPS 33 (2020), 6840–6851.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. 2021. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685 (2021).

Li Hu. 2024. Animate anyone: Consistent and controllable image-to-video synthesis
for character animation. In Proc. CVPR. 8153–8163.

Zhichao Huang, Xintong Han, Jia Xu, and Tong Zhang. 2021. Few-shot human motion
transfer by personalized geometry and texture modeling. In CVPR.

Hyeonho Jeong, Jinho Chang, Geon Yeong Park, and Jong Chul Ye. 2024. DreamMotion:
Space-Time Self-Similarity Score Distillation for Zero-Shot Video Editing. arXiv
preprint arXiv:2403.12002 (2024).

Hyeonho Jeong, Geon Yeong Park, and Jong Chul Ye. 2023. VMC: Video Motion
Customization using Temporal Attention Adaption for Text-to-Video Diffusion
Models. arXiv preprint arXiv:2312.00845 (2023).

Xuan Ju, Yiming Gao, Zhaoyang Zhang, Ziyang Yuan, Xintao Wang, Ailing Zeng, Yu
Xiong, Qiang Xu, and Ying Shan. 2024. Miradata: A large-scale video dataset with
long durations and structured captions. arXiv preprint arXiv:2407.06358 (2024).

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and
Christian Rupprecht. 2023. Cotracker: It is better to track together. arXiv preprint
arXiv:2307.07635 (2023).

Shanchuan Lin, Bingchen Liu, Jiashi Li, and Xiao Yang. 2024. Common diffusion
noise schedules and sample steps are flawed. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision. 5404–5411.

Pengyang Ling, Jiazi Bu, Pan Zhang, Xiaoyi Dong, Yuhang Zang, Tong Wu, Huaian
Chen, Jiaqi Wang, and Yi Jin. 2024. MotionClone: Training-Free Motion Cloning for
Controllable Video Generation. arXiv preprint arXiv:2406.05338 (2024).

Yu Lu, Yuanzhi Liang, Linchao Zhu, and Yi Yang. 2024. Freelong: Training-free
long video generation with spectralblend temporal attention. arXiv preprint
arXiv:2407.19918 (2024).

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian
Chen, and Yu Qiao. 2024. Latte: Latent diffusion transformer for video generation.
arXiv preprint arXiv:2401.03048 (2024).

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia.
2024. ControlNeXt: Powerful and Efficient Control for Image and Video Generation.
arXiv preprint arXiv:2408.06070 (2024).

Haonan Qiu, Menghan Xia, Yong Zhang, Yingqing He, Xintao Wang, Ying Shan, and
Ziwei Liu. 2023. Freenoise: Tuning-free longer video diffusion via noise rescheduling.
arXiv preprint arXiv:2310.15169 (2023).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. 2021.
Learning transferable visual models from natural language supervision. In Proc.
ICML. PMLR, 8748–8763.

Chenyang Si, Ziqi Huang, Yuming Jiang, and Ziwei Liu. 2024. Freeu: Free lunch in
diffusion u-net. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4733–4743.

Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe.
2019. First Order Motion Model for Image Animation. In NeurIPS.

Aliaksandr Siarohin, Oliver J Woodford, Jian Ren, Menglei Chai, and Sergey Tulyakov.
2021. Motion representations for articulated animation. In CVPR.

Shuyuan Tu, Qi Dai, Zhi-Qi Cheng, Han Hu, Xintong Han, Zuxuan Wu, and Yu-Gang
Jiang. 2024a. Motioneditor: Editing video motion via content-aware diffusion. In
CVPR.

Shuyuan Tu, Zhen Xing, Xintong Han, Zhi-Qi Cheng, Qi Dai, Chong Luo, and Zux-
uan Wu. 2024b. StableAnimator: High-Quality Identity-Preserving Human Image
Animation. arXiv preprint arXiv:2411.17697 (2024).

JiuniuWang, Hangjie Yuan, DayouChen, Yingya Zhang, XiangWang, and Shiwei Zhang.
2023c. Modelscope text-to-video technical report. arXiv preprint arXiv:2308.06571
(2023).

LuozhouWang, ZiyangMai, Guibao Shen, Yixun Liang, Xin Tao, PengfeiWan, Di Zhang,
Yijun Li, and Yingcong Chen. 2024b. Motion inversion for video customization.
arXiv preprint arXiv:2403.20193 (2024).

Tan Wang, Linjie Li, Kevin Lin, Yuanhao Zhai, Chung-Ching Lin, Zhengyuan Yang,
Hanwang Zhang, Zicheng Liu, and Lijuan Wang. 2024a. Disco: Disentangled control
for realistic human dance generation. In CVPR.

Wenjing Wang, Huan Yang, Zixi Tuo, Huiguo He, Junchen Zhu, Jianlong Fu, and
Jiaying Liu. 2023b. VideoFactory: Swap Attention in Spatiotemporal Diffusions for
Text-to-Video Generation. arXiv preprint arXiv:2305.10874 (2023).

Xiang Wang, Hangjie Yuan, Shiwei Zhang, Dayou Chen, Jiuniu Wang, Yingya Zhang,
Yujun Shen, Deli Zhao, and Jingren Zhou. 2023d. VideoComposer: Compositional
Video Synthesis with Motion Controllability. arXiv preprint arXiv:2306.02018 (2023).

XiangWang, Shiwei Zhang, Changxin Gao, JiayuWang, Xiaoqiang Zhou, Yingya Zhang,
Luxin Yan, and Nong Sang. 2024c. UniAnimate: Taming Unified Video Diffusion
Models for Consistent Human Image Animation. arXiv preprint arXiv:2406.01188
(2024).

Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan
Yang, Yinan He, Jiashuo Yu, Peiqing Yang, et al. 2023a. LAVIE: High-Quality Video
Generation with Cascaded Latent Diffusion Models. arXiv preprint arXiv:2309.15103
(2023).

Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi,
Wynne Hsu, Ying Shan, Xiaohu Qie, and Mike Zheng Shou. 2023a. Tune-a-video:
One-shot tuning of image diffusion models for text-to-video generation. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision. 7623–7633.

Tianxing Wu, Chenyang Si, Yuming Jiang, Ziqi Huang, and Ziwei Liu. 2023b. Freeinit:
Bridging initialization gap in video diffusion models. arXiv preprint arXiv:2312.07537
(2023).

Zhongcong Xu, Jianfeng Zhang, Jun Hao Liew, Hanshu Yan, Jia-Wei Liu, Chenxu Zhang,
Jiashi Feng, and Mike Zheng Shou. 2024. Magicanimate: Temporally consistent
human image animation using diffusion model. In CVPR.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuan-
ming Yang, Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. 2024. CogVideoX:
Text-to-Video Diffusion Models with An Expert Transformer. arXiv preprint
arXiv:2408.06072 (2024).

Danah Yatim, Rafail Fridman, Omer Bar Tal, Yoni Kasten, and Tali Dekel. 2023. Space-
Time Diffusion Features for Zero-Shot Text-Driven Motion Transfer. arXiv preprint
arXiv:2311.17009 (2023).

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. 2023a. IP-Adapter: Text Com-
patible Image Prompt Adapter for Text-to-Image Diffusion Models. arXiv preprint
arxiv:2308.06721 (2023).

Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. 2023b. Ip-adapter: Text com-
patible image prompt adapter for text-to-image diffusion models. arXiv preprint
arXiv:2308.06721 (2023).

Hangjie Yuan, Shiwei Zhang, Xiang Wang, Yujie Wei, Tao Feng, Yining Pan, Yingya
Zhang, Ziwei Liu, Samuel Albanie, and Dong Ni. 2024. InstructVideo: instructing
video diffusion models with human feedback. In Proc. CVPR. 6463–6474.

10

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators
https://arxiv.org/abs/2211.13221


FlexiAct: Towards Flexible Action Control in Heterogeneous Scenarios SIGGRAPH Conference Papers ’25, August 10–14, 2025, Vancouver, BC, Canada

David Junhao Zhang, Jay Zhangjie Wu, Jia-Wei Liu, Rui Zhao, Lingmin Ran, Yuchao
Gu, Difei Gao, and Mike Zheng Shou. 2024b. Show-1: Marrying pixel and latent
diffusion models for text-to-video generation. Int. J. Comput. Vis. (2024), 1–15.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023. Adding conditional control to
text-to-image diffusion models. In Proc. ICCV. 3836–3847.

Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and
Fangyuan Zou. 2024a. Mimicmotion: High-quality human motion video generation
with confidence-aware pose guidance. arXiv preprint arXiv:2406.19680 (2024).

Rui Zhao, Yuchao Gu, Jay Zhangjie Wu, David Junhao Zhang, Jiawei Liu, Weijia Wu,
Jussi Keppo, and Mike Zheng Shou. 2023. MotionDirector: Motion Customization
of Text-to-Video Diffusion Models. arXiv:2310.08465 [cs.CV]

Yuan Zhou, Qiuyue Wang, Yuxuan Cai, and Huan Yang. 2024. Allegro: Open the Black
Box of Commercial-Level Video Generation Model. arXiv preprint arXiv:2410.15458
(2024).

Shenhao Zhu, Junming Leo Chen, Zuozhuo Dai, Yinghui Xu, Xun Cao, Yao Yao, Hao Zhu,
and Siyu Zhu. 2024. Champ: Controllable and Consistent Human Image Animation
with 3D Parametric Guidance. In EECV.

11

https://arxiv.org/abs/2310.08465

	Abstract
	1 Introduction
	2 Related Work
	2.1 Global Motion Customization
	2.2 Predefined signal-based Action Customization
	2.3 Customized Video Generation via Condition Injection

	3 method
	3.1 Overview
	3.2 Basis Image-to-Video Diffusion Model
	3.3 RefAdapter
	3.4 Frequency-aware Action Extraction
	3.5 Training and Inference Pipeline of FlexiAct

	4 experiment
	4.1 Implementation Details
	4.2 Quantitative Evaluation
	4.3 Qualitative Evaluation
	4.4 Ablation Study

	5 discussion
	References

