
PyRoki: A Modular Toolkit for Robot Kinematic Optimization

Chung Min Kim∗ Brent Yi∗ Hongsuk Choi Yi Ma Ken Goldberg Angjoo Kanazawa

UC Berkeley

https://pyroki-toolkit.github.io

Fig. 1: PyRoki is a modular, extensible, and cross-platform toolkit for kinematic optimization. We unify problems
like inverse kinematics, trajectory optimization, and motion retargeting using composable kinematic variables and costs.
PyRoki aims to support a broad variety of robots and tasks, and runs on CPU, GPU, and TPU.

Abstract— Robot motion can have many goals. Depending
on the task, we might optimize for pose error, speed, colli-
sion, or similarity to a human demonstration. Motivated by
this, we present PyRoki: a modular, extensible, and cross-
platform toolkit for solving kinematic optimization problems.
PyRoki couples an interface for specifying kinematic variables
and costs with an efficient nonlinear least squares optimizer.
Unlike existing tools, it is also cross-platform: optimization
runs natively on CPU, GPU, and TPU. In this paper, we
present (i) the design and implementation of PyRoki, (ii)
motion retargeting and planning case studies that highlight
the advantages of PyRoki’s modularity, and (iii) optimization
benchmarking, where PyRoki can be 1.4-1.7x faster and
converges to lower errors than cuRobo, an existing GPU-
accelerated inverse kinematics library.

I. INTRODUCTION

Numerical optimization is the standard solution for many
tasks in robot kinematics. Using objectives like pose er-
ror [8], smoothness [9], and similarity to a human demon-
stration [6, 10] the robotics community has built diverse
optimization software for tasks such as inverse kinematics
(IK) [1, 3, 11–13], trajectory optimization [4, 5, 14–19], and

∗Equal contribution.

motion retargeting [6, 7, 10]. These tools are fast, mature,
and widely adopted in both research and production.

Despite the shared structure of kinematic optimization,
existing tools are fragmented. Implementations typically rely
on task-specific C++ routines [1], CUDA kernels [5], or
task-specific analytical Jacobians [3]. While these features
can improve efficiency, they create barriers for incorporat-
ing new objectives. As shown in Table I, different task
and robot hardware variations can require different tools.
This fragmentation prevents tools from transferring between
related problems. Low-level specialization also constrains
computation: optimizers tend to be restricted to either only
CPU or only GPU operation.

We present PyRoki (Python Robot Kinematics), a mod-
ular, extensible, and cross-platform toolkit for kinematic
optimization. The core idea behind PyRoki is that many
tasks that currently require disjoint tools—such as IK, tra-
jectory optimization, and motion retargeting—solve similar
optimization problems. PyRoki provides (i) an interface
for specifying these problems using modular variable and
cost function abstractions, (ii) the ability to efficiently solve
them using a Levenberg-Marquardt optimizer, and (iii) a
web-based visualizer for interactively tuning cost weights.

ar
X

iv
:2

50
5.

03
72

8v
1

 [
cs

.R
O

]
 6

 M
ay

 2
02

5

https://pyroki-toolkit.github.io

Hardware Supported Robots Tasks Features

Method CPU GPU TPU Arm Hand Humanoid IK Traj.
Opt. Retargeting Collision Custom

Costs

TracIK [1] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

pink [2], mink [3] ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✗

TrajOpt [4] ✓ ✗ ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

cuRobo [5] ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓

Dex-Retargeting [6] ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

H2O [7] ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗

PyRoki ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TABLE I: Comparison between PyRoki and a selection of existing kinematic optimization tools. This table summarizes
the documented features and supported functionalities of different frameworks, highlighting the broad capabilities of PyRoki.

Furthermore, PyRoki is designed for efficient execution on
CPU, GPU and TPU. The goal of PyRoki is to streamline
kinematic optimization for robotics, just as deep learning
frameworks like PyTorch [20] have made it easier to define
and experiment with deep learning models.

The contributions of this paper are as follows:

1) Toolkit. We present PyRoki, a modular toolkit for
kinematic optimization for robotics. PyRoki directly
supports standards like URDF [21], and can run on
CPU, GPU, and TPU. It also includes a real-time web-
based visualizer to explore robot behavior, such as
adjusting the impact of cost functions and adding new
scene visualizations.

2) Applications. We demonstrate the effectiveness of
PyRoki’s unified framework across multiple tasks,
including inverse kinematics, trajectory optimization,
and motion retargeting for robot hands and humanoids.

3) Benchmarking. PyRoki solves optimization prob-
lems using a Levenberg-Marquardt solver. We evaluate
PyRoki using both automatic and analytic Jacobians.
For batched IK, PyRoki can be 1.4-1.7x faster than
previous GPU-accelerated methods [5].

All code is released with an open-source license.

II. RELATED WORK

A. Inverse Kinematics

The goal of inverse kinematics (IK) is to recover a joint
configuration that achieves a desired end-effector pose. Clas-
sical approaches focus on recovering analytical, closed-form
solutions for this problem [22–27]. These approaches are
efficient, but require assumptions on kinematic configuration.
Recent approaches have therefore focused more on iterative
optimization [1, 3, 5, 9, 11, 28–32], which is more flexible.
Optimization enables secondary objectives for controlling
redundant degrees of freedoms [33], both geometric [5, 30,
34] and learned [29] collision constraints, Critically, iterative
optimization also generalizes across robot embodiments. The
goal of PyRoki is to take this flexibility a step further.
Rather than specialize for the IK task alone, PyRoki
provides a kinematic optimization toolkit where IK can be
defined using a subset of possible cost functions.

B. Trajectory Optimization

While inverse kinematics focuses on solving for a single
joint configuration, the goal of trajectory optimization is to
output a continuous sequence of joint configurations. Meth-
ods include trajectory optimization with collision costs [4,
14–16, 35, 36], applications with multiple goal sets [37], and
simultaneous grasp and trajectory optimization [38, 39]. An
important insight made by [36] is that trajectory optimization
can be accelerated by exploiting structure: each configuration
in the trajectory interacts with its temporal neighbors, leading
to sparse optimization problems. Trajectory optimization can
therefore benefit from sparse linear algebra routines [40–44],
which PyRoki supports.

C. Motion Retargeting

Motion retargeting is the problem of transferring motion
from a source embodiment to a target embodiment [34, 45]
(e.g., from human to robot). Retargeting is critical step for
many systems for robot teleoperation [6, 46] and for learning
from human demonstrations [7, 47–49], but is made chal-
lenging by kinematic differences between embodiments—it
requires balancing both similarity and physical plausibility
objectives [50, 51]. Different application contexts also im-
pose distinct computational requirements: for teleoperation,
motion retargeting might need to run in real-time on a
single CPU to control a single robot’s motion. In contrast,
batch processing on GPUs can dramatically accelerate offline
processing for learning from large-scale datasets [52–55].
PyRoki aims to simplify optimization-based retargeting by
making it easier to compose and tune costs, while introducing
efficient parallelization on GPUs.

D. Modular Optimization Tools

Modular optimization tools have transformed numerous
scientific and engineering disciplines. Frameworks like Ten-
sorFlow [56] and PyTorch [20] have revolutionized ma-
chine learning with automatic differentiation and hardware
flexibility. JuMP [57] provides a mathematical optimization
framework with interchangeable solvers, while Drake [58],
Ceres Solver [43], g2o [44], GTSAM [59], miniSAM [60],
CasADi [61], and ACADO [62] offer specialized capabili-
ties for robotics, computer vision, and control applications.
Inspired by these tools, PyRoki aims to simplify kinematic

optimization for diverse robots, tasks, and compute plat-
forms. We summarize relevant features in Table I.

III. PYROKI : MODULAR KINEMATIC OPTIMIZATION

We propose PyRoki, a robot kinematics library that is
designed around three goals:

1) Modular: PyRoki separates optimization variables
from cost functions, creating reusable components that work
across different tasks. This lets the same objectives (e.g.,
collision avoidance, pose matching) apply to multiple tasks
(e.g., inverse kinematics or trajectory optimization) without
reimplementation.

2) Extensible: PyRoki supports rapid prototyping
through automatic differentiation [63], computing Jacobians
for user-defined cost functions, as well as a real-time inter-
face for tuning cost weights. This simplifies custom opti-
mization objectives, while also supporting analytical Jaco-
bians when performance is critical.

3) Cross-Platform: PyRoki runs natively on CPUs,
GPUs, and TPUs, enabling seamless scaling from single-
robot optimization to parallel batch processing. Cross-
platform capabilities can accelerate demanding applications
like processing for large motion datasets or sampling-based
planning [5].

There are three components of PyRoki that make these
goals possible: a quasi-Newton optimizer, variable abstrac-
tions, and composable cost functions.

A. Solver Backbone

Kinematic optimization benefits from quasi-Newton ap-
proaches, which accelerate convergence using cost curvature
approximations. PyRoki uses a Levenberg-Marquardt (LM)
optimizer [64–68]. Our optimizer builds on prior work [41,
69, 70] and uses JAX [63], a high-level array programming
interface that enables parallelization on CPU, GPU, and
TPU. For efficiency, it automatically computes block-sparse
Jacobian matrices; this is particularly advantageous for tem-
porally sparse motion planning problems [36]. PyRoki’s
optimizer does not directly handle hard constraints, but we
outline in Section III-C how we represent joint limits and
contact avoidance with differentiable penalties.

B. Variable Abstractions

For modularity, PyRoki defines abstractions for common
kinematic optimization variables. The core abstraction is the
joint configuration variable, representing robot articulation
states. We represent joint configurations as q, with timesteps
denoted as qt. Forward kinematics maps these configura-
tions to poses, with Tbase←i = FK(q)i representing the
transform between the robot base and joint i. We support
fixed, revolute, and prismatic joints, along with mimic joints
commonly found in robot hands.

Kinematic variables can also be composed with SE(3)
and SO(3) Lie group variables for representing poses and
orientations. Operations like interpolation, composition, and
pose error computation respect geometric structure without
requiring users to implement complex manifold operations.

Fig. 2: Interactive Web-based Robot Viewer. Users can
tune weights for the different costs in real-time using a
web interface (top), built on viser [71]. The viewer can also
display the robot’s configuration, set a goal, or modify the
environment. The user can also add additional visualization,
e.g., manipulability ellipse (bottom).

C. Cost Functions

PyRoki’s modular design is based on the idea of com-
posable cost functions. Different objectives can be combined,
weighted, and reused across different optimization tasks.

In addition to supporting custom cost functions, PyRoki
also comes with pre-implemented costs for common kine-
matic optimization tasks. We survey these in their residual
forms below; in practice, these are also weighted. The LM
optimizer minimizes the sum of squared residuals.

Joint Pose Cost. The joint pose cost ĉpose penalizes the
difference between current and target joint poses:

ĉpose(q, i,Tbase←target) = log(T−1base←targetTbase←i)

This cost can be quickly modified—for example, to include
the base pose of a mobile manipulator. We evaluate this in
Section V-B.

Joint Limit Cost The joint limit cost ĉlimit penalizes joint
values that are outside of their mechanical bounds:

ĉlimit(q) = max(0,q− qupper) + max(0,qlower − q)

where qupper and qlower are the upper and lower mechanical
limits of the joint, respectively.

Velocity Limit Cost The velocity limit cost ĉvel penalizes
joint velocities that are outside of their mechanical limits:

ĉvel(q, q̇) = max(0, |q̇| − q̇limit · dt)

where q̇i,limit is the velocity limit of the joint, and dt is the
time step between configurations.

Joint Regularization Cost. The joint regularization cost
ĉreg encourages the solution to be close to a user-defined
default pose, as redundant robots (e.g., 7-DoF arms) can
reach multiple configurations.

ĉreg(q) = q− qreg

Smoothness Cost. The smoothness cost ĉsmooth encourages
small changes in joint positions, and is useful for generating
smooth trajectories.

ĉsmooth(q, t) = qt − qt−1

Similar costs can be written for acceleration and jerk mini-
mization by approximating from qt with the five-point stensil
method [5].

Manipulability Cost. The manipulability cost ĉmanip pe-
nalizes configurations where the robot is close to a singu-
larity, and maximizes the Yoshikawa’s manipulability mea-
sure [72].

ĉmanip(q, i) =

(√
det(Ji(q)Ji(q)T) + ϵ

)−1
where Ji(q) is the manipulator Jacobian of the robot at
configuration q for the i-th robot joint, and ϵ is a small
constant to prevent division by zero.

Collision Avoidance Costs. Self and world collision costs
are critical for generating feasible robot motion. Following
prior work [5, 11], we implement them as:

ĉself coll(q) =
∑

(i,j)∈links

f(dij(q), ηij)

ĉworld coll(q) =
∑

(i,j)∈links,obs

f(dij(q), ηij)

where dij is the signed distance between collision geometries
for link pairs (i, j) at joint configuration q (dij < 0 if in
collision). The signed distance is then converted into a cost
dc using a smooth activation function f(d, η) = that avoids
a discontinuity at d = 0 [5, 14] and penalizes

dc =

−d+ 0.5η if d < 0
0.5
η (−d+ η)2 if 0 < d < η

0 otherwise
(1)

where η is the buffer distance. In Section IV-A, we show
how collision can also be considered across timesteps.

D. Interactive Robot Web Viewer
Good visualization is critical for 3D robotics tasks.

PyRoki includes an interactive web-based viewer built on
viser [71], which provides an intuitive way to explore robot
behavior in real time. With the viewer, users can interactively
adjust cost function weights and immediately see how they
affect robot motion, helping to balance competing objectives
like end-effector accuracy, joint limits, and collision avoid-
ance. Beyond weight tuning, the viewer allows interactive
scene modifications (moving obstacles) and custom elements
like manipulability ellipses (Figure 2).

Fig. 3: Trajectory Optimization. PyRoki can be used to
formulate trajectory optimization problems that find valid
collision-free solutions from naive straight-line initializations
(top), similar to CHOMP [14]. The arm is approximated
as spheres (bottom), which are connected into capsules for
collision checking between neighboring timesteps.

IV. QUALITATIVE RESULTS

We illustrate PyRoki’s modularity and extensibility us-
ing four robot kinematic tasks, which use both pre-defined
(Sec. III-C) and custom costs. We begin with a case study
on IK and trajectory optimization, drawing on existing
optimization-based motion planning approaches [4, 14]. We
then examine PyRoki for robot motion retargeting, trans-
ferring human motions to humanoids and robot hands.

A. Inverse Kinematics and Trajectory Optimization

Writing inverse kinematics in PyRoki is straightforward;
the user only needs to import their robot URDF and assemble
cost terms defined in Section III-C, such as the joint pose
cost, joint limit costs, and joint regularization cost. This
formulation can be easily extended to find IK solutions
close to the current state, or to find collision-free solutions.
Moreover, these tasks can be executed seamlessly across a
diverse range of robotic platforms, as shown in Figure 1.

Much of the logic for IK can be re-used for trajectory
optimization. We show an example setting where a UR5
robot arm moves between specified start and goal poses while
avoiding an obstacle in the middle, as shown in Figure 3.
The trajectory is optimized with the same costs in IK, but
also including collision avoidance and acceleration- and jerk-
minimization. We solve for the initial trajectory by first
determining collision-free start and goal joint configurations
using inverse kinematics. We then linearly interpolate be-
tween these configurations to create a trajectory, which may
initially be in collision with the environment.

We additionally implement continuous collision costs
through sweeping volumes [4, 14] to check collision between
timesteps. The UR5 robot is modeled as a series of spheres

Fig. 4: Robot Motion Retargeting. We show motion retargeting for humanoids and robot hands using PyRoki, using
the same motion transfer cost across robots and tasks. To handle differences in robot morphology, we optimize for robot
joint configurations and per-link scaling factors between embodiments simultaneously. Contact costs ensure humanoids stay
grounded through scene contact (left) and maintain fingertip-object contact when present in the source motion (right). Blue
dotted lines indicate contact relationships between the robot hand and the object.

(see Fig. 3, bottom), and each sphere associated with the UR5
at timestep t is connected to the corresponding sphere at the
next timestep to form a capsule. These capsules are then
used to compute collision costs with the surrounding world
obstacles. We note that this cost is quick to implement—this
can be done with only a few lines of Python. An example
output is shown in Figure 3; see the supplemental video for
more results.

B. Motion Retargeting

PyRoki’s flexibility is especially useful for motion re-
targeting, which often requires scaling or motion warping.
Extensibility lets PyRoki tackle retargeting scenarios that
require careful balance between motion fidelity and physi-
cal constraints. We demonstrate the versatility of PyRoki
through several challenging retargeting scenarios, from full-
body humanoid motion to hand-object interactions. Each
task requires domain-specific costs, which can be prototyped
quickly using auto-differentiated Jacobians.

We implement sparse, keypoint-based retargeting inspired
by [51]. By aligning keypoint positions and preserving the
relative distances and angular relationships between joints,
our cost functions treat both body and hand cases identically.
This unified approach allows our method to seamlessly
adapt across diverse skeletal structures with varying scales
and degrees of freedom. We discuss the details for each
experiment below:

1) Full-body Humanoid Retargeting: We transfer human
motion onto the Unitree G1 [73] and H1 [74] humanoids,
ensuring that it remains physically plausible within the scene.
Our inputs include human keypoint trajectories, the scene

mesh, and information regarding whether each foot is in
contact with the ground on a per-frame basis. Motion transfer
costs are designed such that they focus on using joint
relationships to preserve the motion [51], instead of keypoint
positions which tend to bring the humanoid feet too close
together [7]. For each pair of joints in the kinematic chain, we
optimize their relative positions (scaled by learned per-link
factors) and relative angles (using cosine similarity between
joint vectors) to match input human keypoints. This allows
the optimizer to handle the differences in limb proportions.
We also add a cost to penalize the knee joints from becoming
too close to each other. To ensure physical plausibility, we
enforce floor contact constraints, foot orientation costs, self-
collision avoidance, and joint limits. Example results are
shown in Fig. 4. The same cost ensures robust retargeting to
robots with significantly different shapes (G1: 127cm, H1:
178cm); see the supplemental video for more details.

2) Hand-Object Interaction Retargeting: In this scenario,
we use PyRoki to transfer human hand motions from
DexYCB [75] to a robot hand. We use the same motion
transfer cost used in full-body humanoid retargeting to align
MANO [76] human hand motions to a robotic Shadow
Hand [77]. In parallel, we add a contact cost that maintains
consistent contact between the robot hand and object sur-
faces. This modular architecture simplifies domain-specific
objectives (e.g., contact), which improve results for this task.

V. QUANTITATIVE RESULTS

We evaluate PyRoki on modularity, flexibility, and com-
putational efficiency. First, we show it can be used to imple-
ment the vector retargeting approach of Dex-Retargeting [6]

Fig. 5: Implementing vector-based hand retargeting.
We implement the keypoint vector loss described in Dex-
Retargeting [6] using PyRoki. Our global IK approach
achieves slightly lower final costs than the original (diff. IK).

to achieve comparable hand motion quality. Second, we show
how we can extend an IK implementation to simultaneously
optimize the base pose of a Fetch mobile manipulator with
its arm configuration. Finally, we compare IK runtime per-
formance, measuring how autodiff and analytical Jacobians
scale against cuRobo [5] on CPU and GPU. All experiments
were performed on a desktop PC with an AMD 5955WX
CPU and NVIDIA RTX 4090 GPU.

A. Reproducing Dex-Retargeting

To evaluate PyRoki’s modularity, we demonstrate its
ability to replicate existing methods by re-implementing
the vector retargeting cost in Dex-Retargeting [6], a CPU-
based differential IK optimization library. We find that our
implementation can produce visually similar motions that
capture the same semantic hand poses, and reach very similar
values for the keypoint cost (0.068 ± 0.070) for a human
hand trajectory of 621 timesteps, as shown in Fig. 5. This
problem can also be extended with new costs (e.g., contact
loss in Sec.IV-B.2) and batch processing on GPUs.

B. Inverse Kinematics with a Mobile Base

In mobile manipulation, solving inverse kinematics (IK)
requires considering both the robot’s arm and base positions.
A common method is to first estimate a fixed base pose and
then solve IK for the arm [1, 17]. However, this sequential
approach can fail if the chosen base pose makes the target
end-effector pose unreachable.

With PyRoki’s modular design, we can add the SE(2)
base pose as an optimization variable and adjust pose cost
such that the end effector’s transform includes the base
transform (Tworld←baseTbase←i). To evaluate this method,
we sample reachable end-effector poses from a fixed base
position and apply random translations to create target poses
that may require base movement. An IK solution is deemed
successful if the position error is under 5mm and the rotation
error is below 0.05 radians.

Mobile Base
Error (mean ± std) Success

Rate (%)Pos. (m) Rot. (rad)

Static 0.616 ± 0.600 0.470 ± 0.426 24
Optimized 5.40e-6 ± 4.31e-5 0.0 ± 0.0 100

TABLE II: Optimizing base pose for IK with mobile
robot: The inverse kinematics task in Sec. IV-A can be
modified to incorporate the base pose of the Fetch robot as
an optimizable variable, which significantly improves both
position and rotation accuracy.

Batch
PyRoki (CPU) PyRoki (GPU)

Analytical AutoDiff Analytical AutoDiff

1 5.9 36.9 3.6 11.4
10 48.2 332.4 3.6 13.1
100 396.7 2173.0 4.7 26.6
1000 3037.6 19 949.0 15.5 253.1
2000 5534.7 39 284.8 32.8 624.4

TABLE III: IK-Beam runtime for analytical vs. autodiff
Jacobians. We compare inverse kinematics solve times (ms)
on CPU and GPU. Analytical Jacobians provide significant
speedup, especially at higher batch sizes. IK-Beam uses 64
initial seeds; a batch size of 1000 means that up to 64000
LM steps are computed in parallel.

As shown in Table II, optimizing the base pose dramat-
ically improves performance. With a fixed base, the solver
achieves only a 15% success rate with large position errors
(>60cm). In contrast, simultaneous optimization of the base
pose achieves a 100% success rate with mean position errors
under 0.005mm. This improvement highlights the practical
utility of PyRoki’s extensibility.

C. Runtime Analysis

PyRoki supports both analytical and autodiff Jacobians,
parallelized optimization, and different computation plat-
forms (CPU, GPU, TPU). To explore the advantages of this
flexibility, we explore IK for the Franka Panda robot using
a beam search-inspired algorithm that we call IK-Beam. IK-
Beam is designed to be both robust and simple to implement
using PyRoki. Given a target pose, IK-Beam begins with 64
start seeds. We run 16 total Levenberg-Marquardt steps. The
first 6 LM steps optimize all 64 initializations in parallel. We
then discard all but the 4 seeds with lowest error, which are
optimized for the 10 final LM steps. The returned solution
is the best from these 4 seeds.

Table III presents IK-Beam solve times across varying
batch sizes, Jacobian options, and CPU/GPU compute plat-
forms. We find that analytical Jacobians provide speedups
ranging from 3x-19x over autodiff. GPU parallelization helps
runtime scale better with increasing batch sizes.

We additionally compare with cuRobo [5], a popular GPU-
accelerated IK library (Table I). Depending on batch size, we
find that IK-Beam is between 1.4x and 1.7x faster, while
converging to lower errors. We believe that the accuracy
improvement is mostly explained by the optimizer—cuRobo
uses L-BFGS, while PyRoki uses LM (Sec. III-A).

Batch cuRobo [5] IK-Beam (PyRoki)

Time (ms) Succ. (%) Pos. Err Ori. Err (rad) Time (ms) Succ. (%) Pos. Err (mm) Ori. Err (rad)

1 5.03 100 7.40× 10−4 2.55× 10−6 3.58 100 8.50× 10−5 5.65× 10−7

10 5.27 100 2.67× 10−3 5.58× 10−6 3.60 100 1.65× 10−4 2.72× 10−7

100 6.76 100 3.59× 10−3 7.05× 10−6 4.70 100 2.99× 10−4 4.19× 10−7

1000 26.37 100 4.70× 10−3 6.96× 10−6 15.54 100 2.55× 10−4 3.89× 10−7

2000 50.32 99.95 4.31× 10−3 6.93× 10−6 32.81 100 3.04× 10−4 4.67× 10−7

TABLE IV: Comparison between cuRobo and IK-Beam. IK-Beam, which is implemented using PyRoki, is faster and
converges to lower errors. Experiments are run on the Franka Panda robot with a modified version of the official cuRobo [5]
benchmarking script. Following cuRobo, reported errors are the 98th percentile of all solutions in the batch.

VI. CONCLUSION

We present PyRoki, a modular, extensible, and cross-
platform toolkit for robot kinematic optimization. A variety
of robot kinematic optimization problems can be imple-
mented and extended simply by composing variables and
cost functions, while running efficiently on CPUs, GPUs, and
TPUs. For example, we can reuse the same collision costs
throughout all the tasks presented in the paper—from inverse
kinematics, trajectory optimization, to motion retargeting
with humanoids. PyRoki is open-source and invites users
to extend its capabilities.

VII. ACKNOWLEDGEMENT

This project was funded in part by NSF:CNS-2235013,
IARPA DOI/IBC No. 140D0423C0035, and DARPA No.
HR001123C0021; Chung Min Kim and Brent Yi are sup-
ported by the NSF Research Fellowship Program, Grant DGE
2146752. We thank Kevin Zakka and Justin Kerr for fruitful
technical conversations.

REFERENCES

[1] P. Beeson and B. Ames, “Trac-ik: An open-source library for
improved solving of generic inverse kinematics,” in 2015 IEEE-RAS
15th International Conference on Humanoid Robots (Humanoids),
IEEE, 2015, pp. 928–935.

[2] S. Caron, Y. De Mont-Marin, R. Budhiraja, S. H. Bang, I. Dom-
rachev, and S. Nedelchev, Pink: Python inverse kinematics based
on Pinocchio, version 3.2.0, 2025.

[3] K. Zakka, Mink: Python inverse kinematics based on MuJoCo,
version 0.0.4, Jul. 2024.

[4] J. Schulman et al., “Motion planning with sequential convex opti-
mization and convex collision checking,” The International Journal
of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[5] B. Sundaralingam et al., “Curobo: Parallelized collision-free robot
motion generation,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), 2023, pp. 8112–8119.

[6] Y. Qin et al., “Anyteleop: A general vision-based dexterous robot
arm-hand teleoperation system,” in Robotics: Science and Systems,
2023.

[7] T. He et al., “Learning human-to-humanoid real-time whole-body
teleoperation,” in 2024 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2024, pp. 8944–8951.

[8] M. P. Strub and J. D. Gammell, “Adaptively informed trees (ait*):
Fast asymptotically optimal path planning through adaptive heuris-
tics,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2020, pp. 3191–3198.

[9] D. Rakita, B. Mutlu, and M. Gleicher, “Relaxedik: Real-time synthe-
sis of accurate and feasible robot arm motion.,” in Robotics: Science
and Systems, Pittsburgh, PA, vol. 14, 2018, pp. 26–30.

[10] A. Handa et al., “Dexpilot: Vision-based teleoperation of dexterous
robotic hand-arm system,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2020, pp. 9164–9170.

[11] Y. Wang, P. Praveena, D. Rakita, and M. Gleicher, “Rangedik: An
optimization-based robot motion generation method for ranged-goal
tasks,” in 2023 IEEE International Conference on Robotics and
Automation (ICRA), IEEE, 2023, pp. 9700–9706.

[12] S. Zhong, T. Power, A. Gupta, and P. Mitrano, PyTorch Kinematics,
version v0.7.1, Feb. 2024.

[13] F. Meier, A. Wang, G. Sutanto, Y. Lin, and P. Shah, “Differentiable
and learnable robot models,” arXiv preprint arXiv:2202.11217,
2022.

[14] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
2009 IEEE international conference on robotics and automation,
IEEE, 2009, pp. 489–494.

[15] M. Bhardwaj et al., “Storm: An integrated framework for fast
joint-space model-predictive control for reactive manipulation,” in
Conference on Robot Learning, PMLR, 2022, pp. 750–759.

[16] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
2011 IEEE international conference on robotics and automation,
IEEE, 2011, pp. 4569–4574.

[17] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ros topics],” IEEE
robotics & automation magazine, vol. 19, no. 1, pp. 18–19, 2012.

[18] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4,
pp. 72–82, 2012.

[19] T. Kunz and M. Stilman, “Time-optimal trajectory generation for
path following with bounded acceleration and velocity,” Robotics:
Science and Systems VIII, pp. 1–8, 2012.

[20] A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” Advances in neural information processing
systems, vol. 32, 2019.

[21] M. Quigley et al., “Ros: An open-source robot operating system,”
in ICRA workshop on open source software, vol. 3, 2009, p. 5.

[22] R. Diankov, “Automated construction of robotic manipulation pro-
grams,” Ph.D. dissertation, Carnegie Mellon University, Robotics
Institute, Aug. 2010.

[23] B. E. Paden, “Kinematics and control of robot manipulators,” Ph.
D. Thesis, 1985.

[24] D. L. Pieper, The kinematics of manipulators under computer
control. Stanford University, 1969.

[25] R. P. Paul, Robot manipulators: mathematics, programming, and
control: the computer control of robot manipulators. Richard Paul,
1981.

[26] M. Raghavan and B. Roth, “Kinematic analysis of the 6r manipu-
lator of general geometry,” in International symposium on robotics
research, Citeseer, 1990, pp. 314–320.

[27] M. L. Husty, “An algorithm for solving the direct kinematics of
general stewart-gough platforms,” Mechanism and Machine Theory,
vol. 31, no. 4, pp. 365–379, 1996.

[28] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time motion
control core of the Orocos project,” in IEEE International Confer-
ence on Robotics and Automation, 2003, pp. 2766–2771.

[29] D. Rakita, H. Shi, B. Mutlu, and M. Gleicher, “Collisionik: A
per-instant pose optimization method for generating robot motions
with environment collision avoidance,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2021,
pp. 9995–10 001.

[30] D. Rakita, B. Mutlu, and M. Gleicher, “RelaxedIK: Real-time Syn-
thesis of Accurate and Feasible Robot Arm Motion,” in Proceedings

of Robotics: Science and Systems, Pittsburgh, Pennsylvania, Jun.
2018.

[31] D. E. Whitney, “Resolved motion rate control of manipulators and
human prostheses,” IEEE Transactions on man-machine systems,
vol. 10, no. 2, pp. 47–53, 1969.

[32] D. E. Whitney, “The mathematics of coordinated control of pros-
thetic arms and manipulators,” 1972.

[33] A. Liegeois et al., “Automatic supervisory control of the configura-
tion and behavior of multibody mechanisms,” IEEE transactions on
systems, man, and cybernetics, vol. 7, no. 12, pp. 868–871, 1977.

[34] M. Gleicher, “Retargetting motion to new characters,” in Proceed-
ings of the 25th annual conference on Computer graphics and
interactive techniques, 1998, pp. 33–42.

[35] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion
planning,” in 2016 IEEE international conference on robotics and
automation (ICRA), IEEE, 2016, pp. 9–15.

[36] M. Mukadam, J. Dong, X. Yan, F. Dellaert, and B. Boots,
“Continuous-time gaussian process motion planning via probabilistic
inference,” The International Journal of Robotics Research, vol. 37,
no. 11, pp. 1319–1340, 2018.

[37] A. D. Dragan, N. D. Ratliff, and S. S. Srinivasa, “Manipulation
planning with goal sets using constrained trajectory optimization,”
in 2011 IEEE International Conference on Robotics and Automation,
IEEE, 2011, pp. 4582–4588.

[38] L. Wang, Y. Xiang, and D. Fox, “Manipulation trajectory optimiza-
tion with online grasp synthesis and selection,” in Robotics: Science
and Systems (RSS), 2020.

[39] J. Ichnowski, M. Danielczuk, J. Xu, V. Satish, and K. Goldberg,
“Gomp: Grasp-optimized motion planning for bin picking,” in 2020
IEEE international conference on robotics and automation (ICRA),
IEEE, 2020, pp. 5270–5277.

[40] F. Dellaert, M. Kaess, et al., “Factor graphs for robot perception,”
Foundations and Trends® in Robotics, vol. 6, no. 1-2, pp. 1–139,
2017.

[41] B. Yi, M. A. Lee, A. Kloss, R. Martı́n-Martı́n, and J. Bohg,
“Differentiable factor graph optimization for learning smoothers,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2021, pp. 1339–1345.

[42] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion revis-
ited,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[43] S. Agarwal, K. Mierle, and T. C. S. Team, Ceres Solver, version 2.2,
Oct. 2023.

[44] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“G 2 o: A general framework for graph optimization,” in 2011 IEEE
international conference on robotics and automation, IEEE, 2011,
pp. 3607–3613.

[45] E. S. Ho, T. Komura, and C.-L. Tai, “Spatial relationship preserving
character motion adaptation,” in ACM SIGGRAPH 2010 papers,
2010, pp. 1–8.

[46] T. Schmidt, R. A. Newcombe, and D. Fox, “Dart: Dense articulated
real-time tracking.,” in Robotics: Science and systems, Berkeley, CA,
vol. 2, 2014, pp. 1–9.

[47] X. B. Peng, A. Kanazawa, J. Malik, P. Abbeel, and S. Levine,
“Sfv: Reinforcement learning of physical skills from videos,” ACM
Transactions On Graphics (TOG), vol. 37, no. 6, pp. 1–14, 2018.

[48] Z. Fu, Q. Zhao, Q. Wu, G. Wetzstein, and C. Finn, “Humanplus:
Humanoid shadowing and imitation from humans,” in Conference
on Robot Learning (CoRL), 2024.

[49] H. Zhang et al., “Kinematic motion retargeting via neural latent opti-
mization for learning sign language,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 4582–4589, 2022.

[50] J. Zhang et al., “Skinned motion retargeting with residual perception
of motion semantics & geometry,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2023,
pp. 13 864–13 872.

[51] T. Cheynel, T. Rossi, B. Bellot-Gurlet, D. Rohmer, and M.-P. Cani,
“Sparse motion semantics for contact-aware retargeting,” in ACM
SIGGRAPH Conference on Motion, Interaction and Games (MIG),
2023.

[52] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J.
Black, “AMASS: Archive of motion capture as surface shapes,”
in Proceedings of the IEEE International Conference on Computer
Vision (ICCV), 2019.

[53] Y. Li, T. Nagarajan, B. Xiong, and K. Grauman, “Ego-exo: Transfer-
ring visual representations from third-person to first-person videos,”
in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[54] J. Lin et al., “Motion-x: A large-scale 3d human motion dataset
with x-reenactment,” in Advances in Neural Information Processing
Systems, 2023.

[55] M. Bollo et al., “Nymeria: A multimodal indoor motion capture
dataset with real and synthetic egocentric video,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024.

[56] M. Abadi et al., “{Tensorflow}: A system for {large-scale} machine
learning,” in 12th USENIX symposium on operating systems design
and implementation (OSDI 16), 2016, pp. 265–283.

[57] M. Lubin, O. Dowson, J. Dias Garcia, J. Huchette, B. Legat, and
J. P. Vielma, “JuMP 1.0: Recent improvements to a modeling lan-
guage for mathematical optimization,” Mathematical Programming
Computation, 2023.

[58] R. Tedrake and the Drake Development Team, Drake: Model-based
design and verification for robotics, 2019.

[59] F. Dellaert and G. Contributors, Borglab/gtsam, version 4.2a8, May
2022.

[60] J. Dong and Z. Lv, “Minisam: A flexible factor graph non-linear least
squares optimization framework,” arXiv preprint arXiv:1909.00903,
2019.

[61] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“Casadi: A software framework for nonlinear optimization and
optimal control,” Mathematical Programming Computation, vol. 11,
pp. 1–36, 2019.

[62] B. Houska, H. J. Ferreau, and M. Diehl, “Acado toolkit—an open-
source framework for automatic control and dynamic optimization,”
Optimal control applications and methods, vol. 32, no. 3, pp. 298–
312, 2011.

[63] J. Bradbury et al., JAX: Composable transformations of
Python+NumPy programs, version 0.3.13, 2018.

[64] K. Levenberg, “A method for the solution of certain non-linear
problems in least squares,” Quarterly of applied mathematics, vol. 2,
no. 2, pp. 164–168, 1944.

[65] D. W. Marquardt, “An algorithm for least-squares estimation of
nonlinear parameters,” Journal of the society for Industrial and
Applied Mathematics, vol. 11, no. 2, pp. 431–441, 1963.

[66] C. W. Wampler, “Manipulator inverse kinematic solutions based
on vector formulations and damped least-squares methods,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 16, no. 1,
pp. 93–101, 1986.

[67] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with
singularity robustness for robot manipulator control,” 1986.

[68] S. R. Buss and J.-S. Kim, “Selectively damped least squares for
inverse kinematics,” Journal of Graphics tools, vol. 10, no. 3,
pp. 37–49, 2005.

[69] B. Yi et al., “Estimating body and hand motion in an ego-sensed
world,” arXiv preprint arXiv:2410.03665, 2024.

[70] N. Heppert, T. Migimatsu, B. Yi, C. Chen, and J. Bohg, “Category-
independent articulated object tracking with factor graphs,” in 2022
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), IEEE, 2022, pp. 3800–3807.

[71] B. Yi, Viser, https://viser.studio/main/, Accessed:
2025-02-17, 2025.

[72] T. Yoshikawa, “Manipulability of robotic mechanisms,” The inter-
national journal of Robotics Research, vol. 4, no. 2, pp. 3–9, 1985.

[73] Unitree g1 humanoid robot, Unitree Robotics, Available:
https://www.unitree.com/g1, 2024.

[74] Unitree h1 humanoid robot, Unitree Robotics, Available:
https://www.unitree.com/h1, 2024.

[75] Y.-W. Chao et al., “DexYCB: A benchmark for capturing hand
grasping of objects,” in IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2021.

[76] J. Romero, D. Tzionas, and M. J. Black, “Embodied hand shape
and pose estimation from a single depth image,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, 2017, pp. 4907–4916.

[77] The shadow dexterous hand, Shadow Robot Com-
pany, Accessed: [Insert Access Date], Available:
https://www.shadowrobot.com/dexterous-hand-series/.

https://viser.studio/main/

	Introduction
	Related work
	Inverse Kinematics
	Trajectory Optimization
	Motion Retargeting
	Modular Optimization Tools

	PyRoki: Modular Kinematic Optimization
	Modular
	Extensible
	Cross-Platform

	Solver Backbone
	Variable Abstractions
	Cost Functions
	Interactive Robot Web Viewer

	Qualitative Results
	Inverse Kinematics and Trajectory Optimization
	Motion Retargeting
	Full-body Humanoid Retargeting
	Hand-Object Interaction Retargeting

	Quantitative Results
	Reproducing Dex-Retargeting
	Inverse Kinematics with a Mobile Base
	Runtime Analysis

	Conclusion
	Acknowledgement

